If you put any faith in DxO Mark scores (and I do understand their limitations), today’s best $500 DSLRs make better images than all of the sub-$4000 cameras sold until 2008. Largely that’s thanks to some good recent APS-C sensors from Sony.

So I’m not sympathetic towards certain Pentax users, who bleat that they can’t make adequate photographs—not until the company delivers a DSLR with a 24×36 mm sensor. (With pre-Photokina Pentax rumors swirling, the issue is once again a hot topic for discussion.)

Full-Frame Pentax?

Full-Frame Pentax?

Yes, many long-time Pentaxians do have investments in full-frame “FA” lenses, ones that could cover the format.

But keep in mind, over the history of photography there have many camera mounts which died out entirely—obsoleting numerous fine lenses. How about Contax/Yashica mount? Minolta MD, or Canon FD? (Or even earlier systems, such as Exakta or the superb Zeiss Contarex?)

By contrast, any Pentax lens made since 1983 can at least be used on a modern DSLR—metering automatically, and with the benefit of built-in shake reduction. So the handwringing that some great lenses have been “orphaned” by Pentax can get a bit exaggerated.

Some point out hopefully that not long ago, Pentax introduced new telephoto lenses bearing the FA designation. Ergo, full-frame is coming!

But truthfully, no decent lens design even breaks a sweat in covering an image circle much smaller than its focal length. With a telephoto, full-frame coverage is basically “free”—so why not go ahead and use the FA labeling? It allowed Pentax to finesse the format question for a while longer; and maybe even sold a couple of extra lenses to Pentax film-body users.

I do agree with the complaint that the viewfinders of most consumer DSLRs are puny and unsatisfying. The view through the eyepiece of a full-frame body is noticeably more generous.

However, the electronic viewfinder of an Olympus E-P2 neatly solves this problem too—at a price savings of about $1400 over today’s cheapest full-frame DSLR. And the EVIL wave is only gathering momentum.

The perpetual cry from full-frame enthusiasts is that Moore’s Law will eventually slash 24x36mm sensor pricing. To me, this seems like a wishful misunderstanding of the facts.

The shrinking of circuit sizes which permits faster processors and denser memory chips is irrelevant to sensor design—the overall chip dimensions are fixed, and the circuitry features are already as small as they need to be.

Also, figuring the costs of CMOS chip production is not entirely straightforward. It costs money to research and develop significant new improvements over prior sensor generations; it’s expensive to create the photolithography masks for all the circuit layers. Then, remember that all these overhead costs must be recouped over only two, perhaps three years of sales. After that, your sensor will be eclipsed by later and even whizzier designs.

Thus, there is more to a sensor price than just the production-line cost; it also depends on the chip quantities sold. And full-frame DSLRs have never been huge sellers.

If APS-C sensors prove entirely satisfactory for 95% of typical photographs (counting both enthusiasts and professionals), a vicious circle results. With no mass-market camera using a full-frame sensor, volumes stay low, prices high. But with sensor prices high, it’s hard to create an appealing camera at a mass-market price point.

Furthermore, let’s consider the few users who would actually benefit from greater sensor area.

For the few who find 12 megapixels inadequate, nudging the number up to 24 Mp is not the dramatic difference you might imagine. To double your linear resolution, you must quadruple the number of pixels. Resolution-hounds would do better to look to medium format cameras, with sensors 40 Mp and up—which conveniently, seem to be dropping towards the $10,000 mark with the release of Pentax’s 645D.

The last full-frame holdouts are those who need extreme high-ISO potential. There’s no doubt that the 12Mp full-frame Nikon D3s makes an astounding showing here, with high-ISO performance that’s a solid 2 f/stops better than any APS-C camera. This is a legitimate advantage of class-leading 24×36 mm sensors.

Yet aside from bragging rights, we have to ask how many great photographs truly require ISO 6,400 and above. ISO 1600 already lets us shoot f/1.7 at 1/30th of a second under some pretty gloomy lighting—like the illumination a computer screen casts in a darkened room.

A day may come when sensor technology has fully matured, and every possible sensitivity tweak has been found. At that point, a particular sensor generation might hang around for a decade or more. So might those long production runs permit much lower unit costs for a full-frame sensor? There will still be a full-frame surcharge simply from the greater surface area and lower chip yields.

But who knows, perhaps it’s possible? By then we may have 40 Mp, 24×36 mm chips that are our new new “medium format.”

On Pentaxian discussion boards, one dispute that absolutely refuses to die is whether Pentax will (or should) introduce a “full frame,” 24x36mm sensor DSLR.

The pleading for 24×36 often comes from those who might have already invested heavily in earlier FA lenses—meaning, ones originally designed to cover the old 135 film format.

I understand the emotion here—it’s quite true that an APS-C sensor wastes some of the capabilities of those lenses. And let’s take it as given that Pentax’s engineers would be fully capable of producing an excellent 24×36 camera.

But does Pentax “owe” its existing customers such a model?

Read the rest of this entry »

Where Are The Lenses?

January 23, 2010

Most DSLRs today evolved from earlier film-camera systems. (Sony’s originally came from Minolta; only Olympus started over from scratch.)

Although lens mounts stayed the same, there was a tiny problem about the sensor. Film cameras shot in a 24 x 36mm format. But making digital sensor chips of that size turns out to be quite expensive and difficult.

Sensor chips are made on costly, ultrapure silicon wafers, each about 8 or 12 inches in diameter. Obviously, increasing the area of each sensor means fewer of them can fit on the wafer.

With all the steps needed to lay down pixel electronics, it’s nearly unavoidable to get a few random, chip-wrecking defects scattered across the wafer. So the bigger each sensor is, the more likely it is to be ruined by some defect.

These two factors mean the economics of “full-frame” sensors will always be forbidding. You can read more details in a rather informative Canon PDF white paper here. (Take their marketing spin with a grain of salt; just start reading at page 11.)

By Canon’s reckoning, a finished APS-C sensor might cost 1/20th as much as a full-frame one. (That was written in 2006; today’s numbers might be a little different, with 12″ wafers more common. But still, the principle applies.)

So, despite all the wails and begging of enthusiast photographers, there are still only a handful of 24 x 36 mm format digital cameras on the market. A Canon 5D Mk II is $2500. A Nikon D700 is $2400. A Leica M9 is a whopping $7000. A Sony A850 is the “bargain,” at only $2000. These prices are without lenses, of course.

Today’s affordable DSLR models are all based on smaller, APS-C sized sensors. The origin of that cryptic name is irrelevant today; but it simply means a chip slightly under 16 x 24 mm.

There are dozens of APS-C models on the market, starting from the low $400’s—and that price includes a kit zoom. Megapixel counts range from 6 to 14 Mp. While it would be misguided to push pixel counts higher than that, the current models give satisfactory images even when set to ISO 800.

It seems apparent that APS-C is today’s sweet spot for digital-camera value. And because of the chip economics I mentioned, that is not likely to change anytime soon.

So let me (finally) get to my real point.

Where are the lenses?

Where Are the Lenses?

Missing in Action: Interesting APS-C Primes

Back in the olden days of 35mm SLRs, the “kit lens” was typically a 50mm standard one, with an aperture f/1.8 or so. A photographer more serious about low-light shooting could buy the f/1.4 version. You could get a nice inexpensive wide angle or portrait lens of f/2.8 or faster.

So, where are the equivalents for APS-C?

Lots of old lenses designed for film bodies are still being sold. But when used on APS, these make you to pay a premium in size, weight, cost, and maximum aperture. Cameramakers have dragged their feet on creating interesting, new, fast lenses dedicated to APS-C bodies.

Today, of course, the default is to offer zooms instead of primes;  the APS-specific lenses you are able to buy are mostly zooms.

Yes, zooms are convenient. But you typically lose two f-stops of light-gathering power. Some say modern image stabilization gives back those two stops—but that’s true only if you don’t care about viewfinder dimness, or blur when the subject moves. Zooms are larger and heavier than primes, too.

The normal lens for an APS-C camera would be about 32 mm (48e on a 1.5x sensor; 52e on a 1.6x Canon). The only camera maker so far to “get it” with an APS-specific normal is Nikon, with their 35/1.8. Sigma sells a 30mm f/1.4 in various mounts—but it’s mystifying that they’re all alone in that market.

For portraits we generally want a nicely-blurred background—meaning we’d like a wide maximum f/stop. This is especially true when using a smaller sensor, because depth of field increases slightly compared to 24 x 36 format. So where are the APS-specific portrait lenses, at f/2.0 or faster? In the range of 60 to 70mm (giving 90-105e), there’s only this Tamron—intended more as a dedicated macro lens.

Yes, there’s oodles of 50mm’s around, recycled from the film era. Canon is well known for their “thrifty 50” —which apparently they’re able to knock out for a hundred bucks, despite it covering a larger format. Why on earth should APS-specific lenses be more expensive? The image circle they cover is only 2/3rds the width!

Shooting film, my most-used wide-angle is a 24mm f/2.8. And back in the day, cheap 28mm f/2.8’s were a dime a dozen. But convert that to APS-speak. Are there any f/2.8 lenses of roughly 17mm? Is your sole available choice one chubby $600 zoom? I sure can’t find anything else.

I’ll give credit to Pentax, for creating the widest lineup of APS-specific lenses—including several beautifully-finished primes. But their prices are high, and their widest apertures are really nothing to get excited about.

Finally, lets take a glance at the Micro Four Thirds universe, too. Panasonic’s new 20mm f/1.7 pancake (40e on the µ4/3 sensor format) has indeed made quite a splash.

The test reports are excellent. So I suppose it would be snarky to observe that Panasonic’s 20 just revives a lens style that numerous snapshot cameras offered in the 1970s—and at a much higher price.

So, where are the lenses?